In this paper we describe our experience in the development and testing of a medical decision support system based on open R/Shiny tools at the Center for the Treatment of New Coronavirus Infection (First Pavlov State Medical University). The first version of the software was created and deployed in less than two weeks, and contained basic functionality for the visualization of significant clinical and laboratory parameters for each patient, as well as a summary table for all patients in the department and in the hospital as a whole. To improve convenience, a patient risk score based on the monitoring of standard clinical laboratory parameters was introduced into the system. The use of the developed software during the first three waves of hospitalizations made it possible to significantly reduce the time spent on routine actions by doctors to assess the severity of the condition of particular patients, and all patients of the department as a whole.
References
1. Govindan K, Mina H, Alavi B. A decision support system for demand management in healthcare supply chains considering the epidemic outbreaks: A case study of coronavirus disease 2019 (COVID-19). Transportation Research Part E: Logistics and Transportation Review. 2020; 138: 101967.
2. Liu Y, Wang Z, Ren J, Tian Y, Zhou M, Zhou T, et al. A COVID-19 Risk Assessment Decision Support System for General Practitioners: Design and Development Study. J Med Internet Res. 2020; 22(6): e19786.
3. Wu G, Yang P, Xie Y, Woodruff HC, Rao X, Guiot J, et al. Development of a Clinical Decision Support System for Severity Risk Prediction and Triage of COVID-19 Patients at Hospital Admission: an International Multicenter Study. Eur Respir J. 2020; 2001104.
4. Vida Decision Support System for COVID-19. MIT Media Lab. Available at: https://www.media.mit.edu/projects/vida-decision-support-system/overview.
5. Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E, et al. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ. 2020; m1328.
6. Bakin EA, Stanevich OV, Danilenko DM, Lioznov DA, Kulikov AN. Fast prototyping of a local fuzzy search system for decision support and retraining of hospital staff during pandemic. Health Inf Sci Syst. 2021; 9(1): 21.
7. Wickham H, Henry L. tidyr: Tidy Messy Data. 2019. Available at: https://CRAN.R-project.org/package=tidyr.
8. Wickham H, François R, Henry L, Müller K. dplyr: A Grammar of Data Manipulation. 2020. Available at: https://CRAN.R-project.org/package=dplyr.
9. Gagolewski M. R package stringi: Character string processing facilities. 2019. Available at: http://www.gagolewski.com/software/stringi.
10. Schauberger P, Walker A. openxlsx: Read, Write and Edit xlsx Files. 2019. Available at: https://CRAN.R-project.org/package=openxlsx.
11. Wickham H, Hester J, Francois R. readr: Read Rectangular Text Data. 2018. Available at: https://CRAN.R-project.org/package=readr.
12. Sievert C. Interactive web-based data visualization with R, plotly, and shiny. Boca Raton, FL: CRC Press, Taylor and Francis Group; 2020.
13. Galili T, O’Callaghan A, Sidi J, Sievert C. heatmaply: an R package for creating interactive cluster heatmaps for online publishing. Bioinformatics. 2018; 34(9): 1600-2.
14. Thieurmel B, Marcelionis A, Petit J, Salette E, Robert T. rAmCharts: JavaScript Charts Tool. 2019. Available at: https://CRAN.R-project.org/package=rAmCharts.
15. Bakin EA, Stanevich OV, Belash VA, Belash AA, Savateeveva GA, Bokinova VA, et al. A precise score for the regular monitoring of COVID-19 patients condition validated within the first two waves of the pandemic. Infectious Diseases (except HIV/AIDS); 2021 Feb. Available at: http://medrxiv.org/lookup/doi/10.1101/2021.02.09.21249859.
16. Huber PJ, Ronchetti E. Robust statistics. 2nd ed. Hoboken, N.J: Wiley; 2009. 354 p. (Wiley series in probability and statistics).
17. Gelman A. Bayesian data analysis. Third edition. Boca Raton: CRC Press; 2014. 661 p. (Chapman & Hall/CRC texts in statistical science).
18. qMS. SP.ARM ; Available at: https://en.sparm.com/
19. Yeh T, Chang T-H, Miller RC. Sikuli: using GUI screenshots for search and automation. In: Proceedings of the 22nd annual ACM symposium on User interface software and technology - UIST ’09 [Internet]. Victoria, BC, Canada: ACM Press; 2009 [cited 2021 Jul 9]. p. 183. Available from: http://portal.acm.org/citation.cfm?doid=1622176.1622213
20. Gojare S, Joshi R, Gaigaware D. Analysis and Design of Selenium WebDriver Automation Testing Framework. Procedia Computer Science. 2015; 50: 341–6.
2. Liu Y, Wang Z, Ren J, Tian Y, Zhou M, Zhou T, et al. A COVID-19 Risk Assessment Decision Support System for General Practitioners: Design and Development Study. J Med Internet Res. 2020; 22(6): e19786.
3. Wu G, Yang P, Xie Y, Woodruff HC, Rao X, Guiot J, et al. Development of a Clinical Decision Support System for Severity Risk Prediction and Triage of COVID-19 Patients at Hospital Admission: an International Multicenter Study. Eur Respir J. 2020; 2001104.
4. Vida Decision Support System for COVID-19. MIT Media Lab. Available at: https://www.media.mit.edu/projects/vida-decision-support-system/overview.
5. Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E, et al. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ. 2020; m1328.
6. Bakin EA, Stanevich OV, Danilenko DM, Lioznov DA, Kulikov AN. Fast prototyping of a local fuzzy search system for decision support and retraining of hospital staff during pandemic. Health Inf Sci Syst. 2021; 9(1): 21.
7. Wickham H, Henry L. tidyr: Tidy Messy Data. 2019. Available at: https://CRAN.R-project.org/package=tidyr.
8. Wickham H, François R, Henry L, Müller K. dplyr: A Grammar of Data Manipulation. 2020. Available at: https://CRAN.R-project.org/package=dplyr.
9. Gagolewski M. R package stringi: Character string processing facilities. 2019. Available at: http://www.gagolewski.com/software/stringi.
10. Schauberger P, Walker A. openxlsx: Read, Write and Edit xlsx Files. 2019. Available at: https://CRAN.R-project.org/package=openxlsx.
11. Wickham H, Hester J, Francois R. readr: Read Rectangular Text Data. 2018. Available at: https://CRAN.R-project.org/package=readr.
12. Sievert C. Interactive web-based data visualization with R, plotly, and shiny. Boca Raton, FL: CRC Press, Taylor and Francis Group; 2020.
13. Galili T, O’Callaghan A, Sidi J, Sievert C. heatmaply: an R package for creating interactive cluster heatmaps for online publishing. Bioinformatics. 2018; 34(9): 1600-2.
14. Thieurmel B, Marcelionis A, Petit J, Salette E, Robert T. rAmCharts: JavaScript Charts Tool. 2019. Available at: https://CRAN.R-project.org/package=rAmCharts.
15. Bakin EA, Stanevich OV, Belash VA, Belash AA, Savateeveva GA, Bokinova VA, et al. A precise score for the regular monitoring of COVID-19 patients condition validated within the first two waves of the pandemic. Infectious Diseases (except HIV/AIDS); 2021 Feb. Available at: http://medrxiv.org/lookup/doi/10.1101/2021.02.09.21249859.
16. Huber PJ, Ronchetti E. Robust statistics. 2nd ed. Hoboken, N.J: Wiley; 2009. 354 p. (Wiley series in probability and statistics).
17. Gelman A. Bayesian data analysis. Third edition. Boca Raton: CRC Press; 2014. 661 p. (Chapman & Hall/CRC texts in statistical science).
18. qMS. SP.ARM ; Available at: https://en.sparm.com/
19. Yeh T, Chang T-H, Miller RC. Sikuli: using GUI screenshots for search and automation. In: Proceedings of the 22nd annual ACM symposium on User interface software and technology - UIST ’09 [Internet]. Victoria, BC, Canada: ACM Press; 2009 [cited 2021 Jul 9]. p. 183. Available from: http://portal.acm.org/citation.cfm?doid=1622176.1622213
20. Gojare S, Joshi R, Gaigaware D. Analysis and Design of Selenium WebDriver Automation Testing Framework. Procedia Computer Science. 2015; 50: 341–6.
For citation
Bakin Е. А., Stanevich O.V., Sayenko L.F., Korobenkov Е. А., Lioznov D.A., Vladovskaya M.D., Kulikov A.N. Tools for the rapid development of medical decision support systems: the experience of the Center for the Treatment of COVID 19 at First Pavlov State Medical University. Medical doctor and information technology. 2021; 4: 36-45. (In Russ.). doi: 1025881/18110193_2021_4_36.
Keywords